Comparison of Conventional and Triple Bolus CT Urography Protocols for Radiation Dose Reduction in Hematuria Evaluation

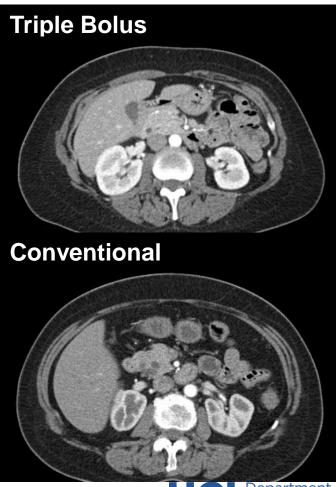
Rajiv Karani¹, John M. Sung¹, Lillian Xie¹, Raphael Benjamin Arada¹, Egor Parkhomenko¹, Daniel J. Lama¹, Francis Jefferson¹, Sonia Lee², Chandana Lall², Roshan M. Patel¹, Zhamshid Okhunov¹, Shlomi Tapiero¹, Ralph V. Clayman¹, and Jaime Landman¹

> ¹Department of Urology, University of California, Irvine, USA, ²Department of Radiology, University of California, Irvine, USA

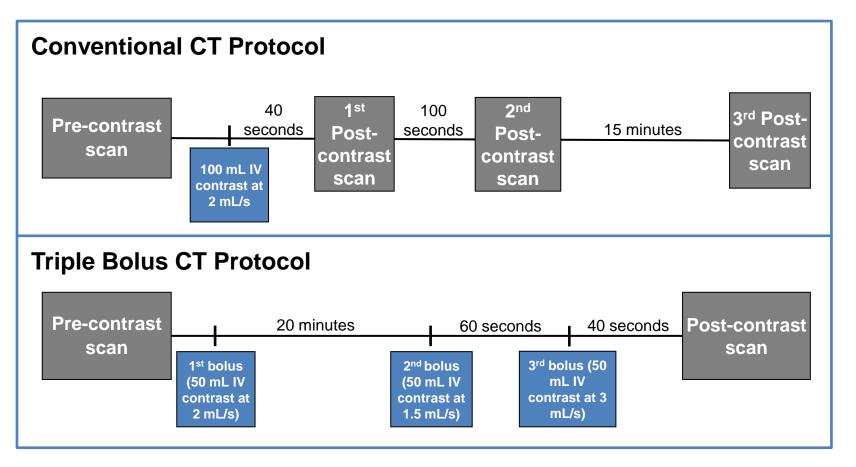
Introduction

- Computed tomography urography (CTU) is the diagnostic tool of choice for the workup of hematuria.
- CT scans expose patients to harmful ionizing radiation.
 - 1.5-2% of cancers in the US are thought to be due to iatrogenic radiation exposure
- Concerns about radiation led to the ALARA (As Low As Reasonably Achievable) principle.

Introduction


• The triple bolus CT (TBCT) protocol is designed to reduce radiation exposure.

• Hypothesis: Triple bolus CT urography will detect pathology at an equal rate as conventional CT urography and expose patients to less radiation.



Methods

- 200 patients undergoing CTU for hematuria workup were randomly assigned to TBCT or CCT protocol.
- Total radiation exposure measured by dose-length product (DLP) was recorded from the radiology report.
- CT scan findings were recorded from the radiology report. Pathology detection rates were compared between TBCT and CCT.

Descriptive Analysis

Variables	CCT (n=100)	TBCT (n=100)	p-value
Mean age, years (range)	60.2 (21-96)	61.2 (25-82)	0.65
Gender, N (%)			
Male	57 (57%)	62 (62%)	0.47
Female	43 (43%)	38 (38%)	
Mean BMI, kg/m ² (SD)	27.01 (4.85)	27.71 (6.17)	0.39
Creatinine, mg/dL(SD)			
Pre-scan	0.88 (0.23)	0.91 (0.19)	0.46
Post-scan	0.84 (0.21)	0.91 (0.17)	0.11
Change in creatinine	-0.05 (0.21)	0.02 (0.10)	0.09
Charlson Comorbidity Index (range)	2.75 (0-14)	2.77 (0-10)	0.96
Amount of IV contrast administered, mL	100 (85-150)	112 (75-150)	<0.001
CT scanner type, N (%)			
Siemens Sensation 64	68 (68%)	73 (73%)	0.09
Siemens Sensation 16	3 (3%)	10 (10%)	
Philips iCT SP 128	17 (17%)	9 (9%)	
Philips iCT SP 256	3 (3%)	3 (3%)	
Type of hematuria, N (%)			0.66
Macroscopic	66 (66%)	63 (63%)	
Microscopic	34 (34%)	37 (37%)	

Results

- TBCT reduced radiation exposure by 30% in patients with <u>macroscopic hematuria</u>.
- TBCT reduced radiation exposure by 38% in patients with <u>microscopic hematuria</u>.
- TBCT and CCT had similar pathology detection rates overall.

Radiation Exposure in DLP (mGy*cm)			
	ССТ	ТВСТ	p-value
Macroscopic hematuria (n=66/63)	1752	1221	<0.001*
Microscopic hematuria (n=34/37)	1640	1016	<0.001*

Urological Pathology Detected (%)			
	ССТ	TBCT	p-value
Macroscopic hematuria (n=66/63)	77%	73%	0.57
Microscopic hematuria (n=34/37)	53%	62%	0.42

Macroscopic Hematuria			
Detection Rate, %	CCT (n=66)	TBCT (n=63)	p-value
Urological Pathology	77%	73%	0.57
Urolithiasis	30%	32%	0.86
Bladder Pathology	32%	22%	0.22
Renal Cyst	23%	21%	0.77
Urological Mass	12%	16%	0.54
Prostate Pathology	21%	24%	0.72
Other pathology	29%	29%	0.88

Microscopic Hematuria			
Detection Rate, %	CCT (n=34)	TBCT (n=37)	p-value
Urological Pathology	53%	62%	0.42
Renal Cyst	26%	24%	0.84
Urolithiasis	15%	19%	0.64
Bladder Pathology	24%	19%	0.63
Urological Mass	3%	11%	0.20
Prostate Pathology	15%	19%	0.64
Other macro/micro	29%	43%	0.23

Conclusions

In the settings of macroscopic and microscopic hematuria evaluation, triple bolus CT reduces radiation exposure by 30% and 38% respectively.

Triple bolus CT has an equivalent ability to detect pathology when compared to conventional CT for both macroscopic and microscopic hematuria.