MP15-17: CLINICAL MEASUREMENT OF MAXIMUM SAFE URETERAL INTERNAL CIRCUMFERENCE USING A NOVEL FORCE SENSOR

Minh-Chau Vu¹, Paul Piedras¹, Andrew S. Afyouni¹, Sohrab N. Ali¹, Pengbo Jiang¹, Roshan M. Patel¹, Michael Klopfer², Jaime Landman¹, Ralph V. Clayman¹ ¹Department of Urology, University of California, Irvine, Orange, CA, USA ²Samueli School of Engineering, University of California, Irvine, CA, USA

INTRODUCTION

- > Ureteral caliber has implications for renal access such as allowing deployment of a larger ureteral access sheath (UAS)¹ while avoiding the need for balloon dilation or pre-stenting which necessitates a second procedure and is associated with cost and patient discomfort^{2,3}.
- > Despite its importance, no studies have explored the maximum, atraumatically sized diameter of the human ureter.
- \succ Using the novel UC Irvine force sensor, we evaluated the luminal largest ureteral circumference at forces \leq 6 Newtons (N), the previously described force threshold for ureteral injury⁴ (Figure 1).

Figure 1. The novel UCI force sensor which can measure forces up to 1/100th of a Newton. The interface with the ureteral access sheath is highlighted by the white arrow.

Department of Jroloav

METHODS

- > Following IRB approval, we sized ureters during URS/PCNL procedures with the UCI force sensor (n = 54, 20 male, 34 female).
- \geq 37 cm long Cook® <u>urethral</u> dilators (10 Fr to 24 Fr) were passed in 2 Fr increments until a maximum force of 6 N was observed.
- \succ After sizing of the ureter, a UAS of similar size (maximum 16 Fr) was placed for the remainder of the procedure.
- \succ A post ureteroscopic lesion scale (PULS) was assigned at the conclusion of the procedure.

RESULTS

- \succ A linear regression with adjustment for covariant effect showed stents increased successful dilator size (stent vs no stent; 17.28 vs 13.92, p = 0.004) (Figure 2A).
- \succ The use of tamsulosin did not result in a larger dilator compared to patients with no pretreatment (tamsulosin vs no pretreatment; 13.76 vs 14.25, *p* = 0.2985, CI [-2.354, 1.3834]) (Figure 2A).

 \triangleright At a force of insertion of ≤ 6 N, 67% of ureters safely accommodated a 14 Fr dilator. >Almost half of ureters (43%) safely accommodated a 16 Fr dilator. >Patients with indwelling stents were able to accept a 3.4 Fr larger dilator compared to patients without stents.

RESULTS

Α.

Figure 2. (A) The average dilator placement size for each of the 4 treatment groups was greater than 14 Fr and (B) the average maximum force for all groups during successful dilation was 5 N.

CONCLUSIONS

- Stent + Tamsulosin (n=11)
- Stent alone (n=2)
- Tamsulosin alone (n= 17)
- No pre-treatment (n=24)

